Nitrogen-Doped Graphene Quantum Dot–Tin Dioxide Nanocomposite Ultrathin Films as Efficient Electron Transport Layers for Planar Perovskite Solar Cells

نویسندگان

چکیده

Tin dioxide (SnO2) has recently been recognized as an excellent electron transport layer (ETL) for perovskite solar cells (PSCs) due to its advantageous properties, such high mobility, suitable energy band alignment, simple low-temperature process, and good chemical stability. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were prepared using a hydrothermal method then used fabricate N-GQD:SnO2 nanocomposite ultrathin films. films investigated applied layers in planar PSCs. The presence of N-GQDs with average size 6.2 nm the improved morphology reduced surface defects. excitation–emission contour map indicated that exhibited remarkably enhanced light-harvesting capability possibility absorbing UV light producing emissions visible range. quenching photoluminescence spectra showed extraction charge recombination. As result, power conversion efficiency (PCE) our PSCs fabricated optimized was by 20.4% over pristine SnO2-based devices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells

In this study, four kinds of structures—[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), PCBM/fullerene (C60), C60/bathocuproine (BCP), and PCBM/C60/BCP—were used as electron transport layers, and the structure, and optical and electronic behaviors of MAPbBr3 perovskite layers after annealing treatments were observed. The experimental results indicate that PCBM/C60 bi-layer structure is accep...

متن کامل

Planar perovskite solar cells using fullerene C70 as electron selective transport layer

Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...

متن کامل

Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells

In this study, the electrodeposition (ED) of ultrathin, compact TiO2 blocking layers (BLs) on fluorine-doped tin oxide (FTO) glass for perovskite solar cells (PSCs) is evaluated. This bottom-up method allows for controlling the morphology and thickness of TiO2 films by simply manipulating deposition conditions. Compared with BLs produced using the spin-coating (SC) method, BLs produced using ED...

متن کامل

Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers

Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ dop...

متن کامل

One-Dimensional Electron Transport Layers for Perovskite Solar Cells

The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crystals

سال: 2023

ISSN: ['2073-4352']

DOI: https://doi.org/10.3390/cryst13060961